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Thermal convection in binary fluid mixtures with a weak concentration diffusivity,
but strong solutal buoyancy forces
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Thermal convection in binary liquid mixtures is investigated in the limit where the solutal diffusivity is
weak, but the separation ratio is large. Representative examples are colloidal suspensions such as ferrofluids.
With a grain size being large on molecular length scales, the particle mobility is extremely small, allowing to
disregard the concentration dynamics in most cases. However, this simplification does not hold for thermal
convection: Due to the pronounced Soret effect of these materials in combination with a considerable solutal
expansion, the resulting solutal buoyancy forces are dominant. Indeed, convective motion is found to set in at
Rayleigh numbers well below the critical threshold for single-component liquids. A nonlinear analysis dem-
onstrates that the amplitude quickly saturates in a state of stationary convective motion.
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I. INTRODUCTION

Thermal convection in binary mixtures has attracted mu
research activity in the past~see@1–3# for a review!. In com-
parison to the pure fluid case, the dynamics and the bifu
tion scenario are more complicated due to the extra degre
freedom associated with the concentration field; thereby
lutal currents are not only driven by concentration gradien
they also occur in response to temperature inhomogene
This is denoted as the thermodiffusive or Soret effect.
influence on the convective buoyancy force is quantified
the dimensionless separation ratioc. The sign ofc indicates
whether temperature and solutal-induced density gradi
are coaligned (1) or opposed to each other (2). At negative
c the motionless conductive state experiences an oscilla
instability, saturating in a nonlinear state of traveling wav
@3#. On the other hand, at positivec the convective instabil-
ity remains stationary, but the critical Rayleigh number
the onset of convection is dramatically reduced as compa
to the pure-fluid reference value Rac

051708. This is a result
of the joint action of thermal and solutal buoyancy force
The present paper is dedicated to the case of positivec in
colloidal suspensions.

A typical property of binary mixture convection is th
formation of concentration boundary layers@4#. This is a
consequence of the fact that the concentration diffusivityDc
in mixtures is usually much smaller than the heat diffusiv
k. For molecular binary mixtures the dimensionless Lew
numberL5Dc /k adopts typical values between 0.1 and 0.
@5#. If colloidal suspensions are under consideration, the t
scale separation is even more dramatic. In this context m
netocolloids, also known as ferrofluids, are a canonical
ample. These materials are dispersions of heavy solid fe
magnetic grains suspended in a carrier liquid@6#. With a
typical diameter of 10 nm the particles are pretty large
molecular length scales, resulting in an extremely small p
ticle mobility. This feature is reflected by the Lewis numbe
as small asL51024 @7#. The smallness ofL leads to a situ-
ation where demixing effects~if any! take place on time
1063-651X/2003/67~4!/046302~8!/$20.00 67 0463
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scales far beyond any reasonable observation time. Thu
those experiments, where thermodiffusion is irrelevant, f
rofluids can safely be treated as single-component fluid s
tems.

However, ferrofluids are also known to exhibit a ve
large separation ratioc. This observation is due to the pro
nounced thermodiffusivity of these materials in combinati
with the fact that the specific weights of the two constitue
~magnetite and water/oil! are quite distinct. Following inves
tigations of Blumset al. @7#, who carried out experiment
with a thermodiffusion chamber,c can adopt values up to
about 100. Recent light scattering investigations of Ba
et al. @8#, revealc values between around2200 ~for ionic
ferrofluids! and up to130 ~cyclohexane carrier! at a volume
concentration of 10%. Meanwhile the Soret effect in ferro
luids has also been studied under the influence of an exte
magnetic field@9–11#.

A fairly small number of papers deals with convection
ferrofluids. Most of them treat these liquids as sing
component fluids, focusing on the extra drive associated w
the temperature dependence of the magnetization~pyromag-
netic effect! @12–14#. An experimental study with a binary
system of ordinaryc and L values has been reported som
time ago@15#. Quite recently Shliomis and Souhar@16# stud-
ied the influence of the concentration field on thermal co
vection in ferrofluids without an external magnetic field. U
ing linear arguments they predicted a novel kind
relaxation-oscillation convection to appear at Rayleigh nu
bers below Rac

0 . Meanwhile, magnetic field related effec
have also been investigated in this problem@17#.

The purpose of the present consideration is to work
more closely the role of the concentration field. For the sa
of concreteness we phrase the discussion in terms of fe
luids but point out that the results apply equally well to a
binary mixture with smallL and large positivec.

Provided no magnetic field is applied, thermal convect
in a perfectly intermixed ferrofluid is usually believed@16# to
behave as a single-fluid system. However, our investiga
reveals that this is not correct. Rather it is the combination
©2003 The American Physical Society02-1
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both, the weak solutal diffusivity and the pronounced solu
buoyancy force, which renders the convective dynamics
tinct from the pure-fluid case. It will be demonstrated belo
that a Rayleigh-Be´nard setup will become unstable at Ra
leigh numbers well below Rac

0 . Within a time, small com-
pared to the creeping solutal diffusion time, convective p
turbations are found to grow up and saturate in a station
convective state.

The rest of the paper is organized as follows. In the n
section the problem is set up along with the governing eq
tions and boundary conditions. Section III presents a lin
analysis specially tailored to account for the slow concen
tion diffusion. In Sec. IV a Galerkin model is employed f
predicting the long time nonlinear convective behavior.

II. SETTING UP THE PROBLEM

Let us consider a laterally infinite horizontal layer of a
incompressible ferrofluid~densityr, kinematic viscosityn)
bounded by two rigid impermeable plates~see Fig. 1!. The
setup is heated from below with a temperature differenceDT
between the plates. In the present paper we do not cons
magnetic field related effects, thus the evolution equati
for nonmagnetic binary mixtures can be adopted. Tak
C(r,t) as the concentration of the solid constituent of t
suspension, the dimensionless equations for the Eule
fields of velocityv(r ,t), temperatureT(r,t), andC(r,t) read
in the Boussinesq approximation@18–20#:

“•v50, ~1!

] tv1v•“v52“W1Pr“2v

1Pr Ra@~T2T̄!2c~C2C̄!#ez, ~2!

] tT1v•“T5“

2T, ~3!

] tC1v•“C5L~“2C1“

2T!. ~4!

Here, we have scaled length by the layer thicknessh, time by
the characteristic heat diffusion timeh2/k, temperature by
DT, and the concentration by (DT /Dc)DT. The scale for the
pressureW is k2r/h2; therebyk, DC , DT are the coeffi-
cients for heat, concentration and thermodiffusion, resp
tively. The quantitiesT̄ andC̄ are reference values defined
the mean values for temperature and concentration. A
from the Prandtl number Pr5n/k and the Lewis numberL
5Dc /k there is a third dimensionless material parameter,
separation ratio c5DTbc /(DcbT), where bT
52(1/r)]r/]T and bc5(1/r)]r/]c are the thermal and

FIG. 1. Sketch of the setup. For details see text.
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the solutal expansion coefficients, respectively. The dim
sionless Rayleigh number Ra5bTgh3DT/(kn) is the control
parameter measuring the strength of the thermal drive. In
~4! we have suppressed the Dufour effect~heat current
driven by a concentration gradient!, as it is significant in gas
mixtures only.

The equations of motion are to be completed by
boundary conditions: Taking the bounding plates to be
slip for the velocity, highly heat conducting, and imperm
able for concentration currents we have at the upperz
51/2) and the lower (z521/2) plates

vuz561/250, ~5!

Tuz561/25T̄7 1
2 , ~6!

~]zC1]zT!uz561/250. ~7!

Equation~7! guarantees that a concentration current can
penetrate the plates. Owing to the Soret effect the app
temperature difference enforces a finite concentration gr
ent at the boundaries. Equations~1!–~4! together with the
boundary conditions~5!–~7! complete the system of hydro
dynamic equations for the variablesv,T,C.

III. LINEAR STABILITY ANALYSIS

A. Basic state and time scale separation

It is easy to show that the above boundary-value prob
has a simple stationary solution, the so-called conduc
state. It is represented by linear temperature and conce
tion distributions

v50, ~8!

Tcond~z!5T̄2z, ~9!

Ccond5C̄1z. ~10!

In order to check for the stability of this solution one usua
proceeds by introducing small perturbations around the c
ductive state and following their time evolution as govern
by the linearized equations of motion. However, owing to t
smallness of the Lewis number, the time necessary to es
lish Ccond exceeds the equilibration time forTcond by a fac-
tor 1/L. Take, for instance, a layer with a depth ofh
53 mm @16#. Then Tcond is adopted after a few therma
diffusion timest td[h2/k (51 in dimensionless units!. With
the heat diffusivity of water,k51.531027 m2/s, this period
amounts to about one minute. On the other hand, foL
51024 the equilibration of the linear concentration profi
Ccond takesh2/(kL), i.e., almost a week! Clearly, this top
any reasonable time scale at which convection experim
are carried out. Accordingly, a linear stability analysis, su
able for a comparison with the experiments, has to acco
for the creeping solutal diffusivity. This can be accomplish
by taking the slowly establishing conducting concentrat
profile C0(z,t) as the basic state rather than the fully dev
2-2



e

e

-

tim
tio
er
-

n

em

e

es
n

o

ar
w

f

ua-

kes

n-

be
a-

u-

is-

i-
fly

he

o-

THERMAL CONVECTION IN BINARY FLUID MIXTURE S . . . PHYSICAL REVIEW E 67, 046302 ~2003!
oped profileCcond. For times larger than the evolution tim
of the temperature profile,t.t td , C0(z,t) obeys the linear
partial differential equation

] tC05L]z
2C0 , ~11!

with the inhomogeneous boundary condition

]zC0uz561/251, ~12!

resulting from Eq.~9!. On the creeping time scale of th
evolution of C0(z,t), t[Lt, the validity condition of Eqs.
~11! and ~12! readst>L.1024.

Equations~11! and ~12! reflect the evolution of the up
coming conductive concentration profileCcond. However, as
outlined at the length above, the system has not enough
to reach this state. At best the Soret driven concentra
current is able to pile up thin concentration boundary lay
along the plates, the depthd of which remains small in com
parison to the distance between the plates (d!1). This is
somewhat difficult to see from the exact solution of Eqs.~11!
and ~12!:

C0~z,t !5z1
4

p (
n50

`
~21!n11

~2n11!2
exp@2~2n11!2p2t#

3sin~2n11!pz, ~13!

since for the smallt ’s, we are interested here, the sum co
verges extremely slowly. A better feeling ofC0 can be ob-
tained by the solution of the somewhat simpler probl
where the boundary conditions~12! are replaced by
]zC0uz521/251 and ]zC0uz@21/2'0 @16#. The solution of
this problem is

]zC0
(approx)~z,t !512erfS 1/21z

2At
D , ~14!

which, for t*1024, describes the development of th
boundary layer close toz521/2 very well.@erf(x) denotes
the error function@21#.# As long as each boundary layer do
not feel the presence of the opposite one, the superpositio
Eq. ~14! with the corresponding solution atz51/2 gives the
realistic picture ofC0. We will also corroborate this scenari
within the nonlinear calculations below.

B. Linear deviations

To probe the stability of the ground state, deviations
added whose time evolution is investigated. To that end
impose@22#

C~r,t !5C0~z,t !1c~r,t !, ~15!

T~r,t !5Tcond~z!1u~r,t !, ~16!

and the velocity fieldv(r,t). Linearizing the equations o
motion for the convective perturbationsv, u, c yields

] t“
2w5Pr Ra~]x

21]y
2!@u2cc#1Pr“4w, ~17!
04630
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] tu2w5“

2u, ~18!

] tc1w]zC05L@“2c1“

2u#. ~19!

Here we have taken twice the curl of the Navier-Stokes eq
tion to derive the equation for the vertical componentw of
the velocity field.

The boundary conditions read as

wuz561/250, ~20!

]zwuz561/250, ~21!

uuz561/250, ~22!

~]zc1]zu!uz561/250. ~23!

Equations~17!–~19! together with Eqs.~20!–~23! are to be
solved for a givenC0.

Since the temporal evolution of the boundary layers ta
place on the stretched time scale 1/L we consider the profile
C0(z,t) as being stationary within the period at which co
vective perturbations grow up to saturation, i.e.,C0(z,t)
.C0(z). The self-consistency of this assumption has to
checked at the end of the calculations. With this approxim
tion of a stationaryC0 all coefficients in Eqs.~17!–~19! are
time independent and solutions in the formu,c,w
}eltcoskx can be adopted. This leads to

l~]z
22k2!w52Pr Rak2~u2cc!1Pr~]z

22k2!2w,
~24!

lu2w5~]z
22k2!u, ~25!

lc1w]zC05L~]z
22k2!~c1u!. ~26!

Note that the above ordinary differential system is not a
tonomous sinceC0(z) entails an explicitz dependence. Only
in the limiting cases where either]zC051 ~fully developed
conductive concentration profile, i.e.,C05Ccond) or ]zC0
50 ~uniform concentration distribution!, Eqs. ~24!–~26!
adopt an autonomous form. These two situations will be d
cussed, in turn, below.

C. Threshold for a fully developed conductive
concentration profile

Although the fully developed conductive profile is of m
nor significance for the present investigation, let us brie
review @2,3# the situation whenC05Ccond or equivalently
]zC051 is the ground state. To identify the threshold of t
stationary instability, we imposel50. We obtain (]z

2

2k2)u52w from Eq. ~25! and (]z
22k2)c.w/L from Eq.

~26!, sinceL!1. This allows to neglect thermal versus s
lutal buoyancy forces in Eq.~24! leading to

L~]z
22k2!3c2c Rak2c50, ~27!

with the boundary conditions

]zcuz561/2'0, ~28!
2-3
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~]z
22k2!cuz561/25]z~]z

22k2!cuz561/250. ~29!

The solution of this eigenvalue problem is known@23# to
provide a stationary instability with a critical wave numb
k5kc50 at

Rac
`5720

L

c
. ~30!

Taking L51024 and c510 we obtain Rac
`.1022, indicat-

ing that the threshold of the Soret driven convection
smaller by a factor of 105 as compared to the pure flui
threshold Rac

0.1708. Note, however, that in order to expe
mentally verify this drastic onset reduction one has to w
for about a week after any temperature step before the lin
conductive concentration profile has fully equilibrated. Th
case will not be pursued further.

D. Threshold at a uniform concentration distribution

We now turn to the opposite limit when the concentrati
boundary layer had no time to develop, thusC05C̄ or,
equivalently,]zC050. Imposing again zero growth ratel
50 we obtain from Eqs.~23! and ~26! the equalityc5u.
Substituting this into Eq.~24! yields

~]z
22k2!2w2Rak2~11c!u50, ~31!

~]z
22k2!u1w50. ~32!

In combination with the boundary conditions~20! and ~22!,
we recover the known boundary value problem for pure-fl
thermogravitational convection; however, with an extra pr
actor (11c) in front of the Rayleigh number. Taking thi
renormalization into account, and following Chandrasekha
solution @24#, yields an exchange of stability at

Rac5
1

11c
Rac

0 ~33!

with a critical wave numberkc53.117 and Rac
0.1708.

The appreciable value of the separation ratioc implies a
significant onset reduction. Strictly speaking, the determi
tion of Rac by imposing zero growth ratel50 is void, since
the creeping diffusion ofC0 can only be disregarded fo
times t!L21. In other words, the exponential amplificatio
of the convectiveperturbationc has to proceed much faste
than thediffusive evolution of C0. This is always true for
Rayleigh numbers sufficiently off from Rac , i.e., whenl is
nonzero withul(Ra)u@L. It is this inequality that guarantee
the validity of the time scale separation. And it is also t
experimentally relevant case because extreme waiting ti
are circumvented. This situation will be focused on in t
following.

E. Linear growth rate

The preceding discussion reveals that a linear stab
theory, suitable to compare with a convection experime
has to rely on the growth rates of the convective pertur
04630
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tions rather than the threshold value. To that end we ass
that the spatial profiles of velocity and temperature are o
slightly disturbed by the concentration dynamics. Acco
ingly we represent their dependencies in terms of sim
trigonometric test functions in the form

w~x,z,t !5A~ t !cos~kx!cos2~pz!, ~34!

u~x,z,t !5B~ t !cos~kx!cos~pz!. ~35!

In contrast, for the convective concentration fieldc we allow
for a steep boundary layer behavior, which we account for
the following multimode expansion:

c~x,z,t !52u~x,z,t !1cos~kx! (
n50

n5`

bn~ t !cos~2pnz!.

~36!

Again we assume that the conductive concentration bou
ary layers had not enough time to pile up, thus impos
]zC050. It is easy to see that Eq.~36! satisfies the boundary
conditions~7!. Furthermore, it conserves the mirror symm
try of c with respect to the midplane between the bounda
(z→2z). Substituting Eq.~36! into Eqs.~17!–~19!, and pro-
jecting the equations with the respective Galerkin mod
reveals that only the first two concentration modesb0 andb1
enter the evolution equation forA. The remaining concentra
tion modesbi with i>2 are decoupled. Summarizing th
Galerkin model for the relevant modesA(t), B(t), b0(t),
b1(t) leads to the following system of equations:

3k214p2

8Pr
lA1S 3k4

8
1k2p212p4DA

2
4k2

3p
Ra~11c!B1

ck2

4
Ra~2b01b1!50, ~37!

4

3p
lB1

4

3p
~p21k2!B2

3

8
A50, ~38!

lb01Lk2b01
2~p21k2!

p
B2

9

16
A50, ~39!

lb11L~k214p2!b11
4

3p
~p21k2!B2

3

8
A50. ~40!

To check the reliability of the above 4-mode approxim
tion, we solved the linearized boundary value problem
Eqs. ~17!–~23!, exactly by means of the numerical metho
outlined in Ref.@25#. Comparing the results for the growt
rate l we found that the Galerkin technique is accurate
about 10%.

For l@L and c@1 ~with the approximationk'p) an
analytical expression forl as an implicit function of the
material and the control parameters (c, L, Pr, and Ra, re-
spectively! can be obtained from Eqs.~37!–~40!:

3 Ra Pr~l12p2Lc!5l~2p21l!~27p2Pr17l!.
~41!
2-4
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Without these approximations numerical results in Fig
illustrate the dependence ofl on the reduced Rayleigh num
ber «5Ra/Rac

021 for different values of the separation r
tio. The dashed line bifurcating at«50 indicates the refer-
ence case of single-fluid convection. From Eq.~41! and Fig.
2 it becomes clear thatl depends for largec on the product
cL rather thanL alone. Thus decreasing the concentrat
diffusivity L makes the curvel(«) approach to the pure fluid
case. On the other hand, increasing the solutal buoya
force by risingc has the opposite effect. Assuming that t
experimental observation time is long enough to detect
unstable convective mode with a growth ratel.0.1 ~i.e.,
waiting time of about 10 heat diffusions times, which in
layer of thicknessh53 mm corresponds to about 10 min an
which is still much shorter thanL21, the time scale ofC0),
then convective motion is detectable at Rayleigh numb
10–50 % below Rac

0 depending on the valuec.
To corroborate the validity of the time scale separation

have also solved the linear problem, where the approxi
tive uniform concentration distribution]zC050 was re-
placed by the true profile, as given by Eq.~14! at t510.
Reevaluating the growth rate yields a value forl, which
differs from the previous one by less than 10%.

Regarding typicalc values in the rangec.10–100, Eq.
~33! indicates that the convective onset threshold Rac for a
homogeneously intermixed ferrofluid experiences a sign
cant reduction relative to the pure-fluid value Rac

0 ~cf. Sec.
III D !. This result appears somewhat counterintuitive:
long as the initial concentration profile is approximately u
form, one might expect convection to behave as in sing
component liquids@16#. But it turns out here that this argu
ment is not generally applicable, provided the appl
Rayleigh number is not too far below the reference va
Rac

0 , Fig. 2 reveals that theconductiveprofile C0(z,t) and

FIG. 2. The linear growth ratel(«) for convective perturbations
as a function of the reduced Rayleigh number«5Ra/Rac

021. Here
Rac

0 is the threshold for the onset of convection in a sing
component fluid. Within the present Galerkin approximation Rc

0

51752.
04630
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the convectiveone c(r,t) evolve on strongly distinct time
scales. While the former always proceeds on the creep
time scale 1/L, the quantityc(r,t) grows up much more
rapidly proportional toelt, in unison withu and w. Then,
owing to the pronouncedc value, solutal buoyancy force
significantly contribute to the destabilization of the condu
tive state.

Our observations shed light on a state of relaxatio
oscillation convection predicted recently by Shliomis a
Souhar@16#. In that paper it was argued that after a sudd
application of Ra,Rac

0 to a ferrofluid with an initial uniform
concentration distribution, a concentration boundary la
along the plates piles up slowly, making the instantane
convective threshold Rac(t) gradually sink below the applied
Ra value. Then the increasing convective motion mixes
the ferrofluid, sweeping out the concentration boundary l
ers. With the concentration profile being rehomogenized,
ferrofluid was argued to behave like a single-component
uid, returning to the conductive state since the applied R
leigh number is smaller than Rac

0 . Thereafter this relaxation
oscillation cycle can start again. The present investigat
reveals that such a cycle cannot work: This is because it
proven that convective perturbations in a homogeneou
mixed ferrofluid do not decay at Rac,Ra,Rac

0 . Rather they
may experience a considerable positive growth rate~see Fig.
2! even at Rayleigh numbers 50% below Rac

0 , say. We con-
clude that there is no mechanism, that drives the system b
to the conductive state. Once initiated, convection will p
sist ~rather than oscillate! and saturate in a stationary nonlin
ear state. This will be shown in the following section.

IV. NONLINEAR BEHAVIOR

The preceding linear analysis reveals that for Rayle
numbers well below Rac

0 , convective fluctuations are expo
nentially amplified on a time scale, which is experimenta
relevant. It can therefore be expected that these fluctuat
saturate quickly in a nonlinear convective pattern. To wo
out whether this final state is stationary or oscillatory w
solved the nonlinear problem by use of numerical metho
To that end we make the following ansatz of a tw
dimensional pattern, which is laterally~in x direction! peri-
odic with wave numberk:

C~x,z,t !5C0~z,t !1c~x,z,t !5C0~z,t !1c1~z,t !coskx,
~42!

T~x,z,t !52z1u~x,z,t !5u0~z,t !1u1~z,t !coskx,
~43!

vx~x,z,t !52~1/k!]zw1~z,t !sinkx, ~44!

vz~x,z,t !5w1~z,t !coskx, ~45!

with incompressibility already built in. Substituting Eq
~42!–~45! into the nonlinear equations of motion~2!–~4! and
sorting for different lateral dependences yield the followi
system of equations:

-

2-5
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1

Pr
] t~]z

22k2!w15~D22k2!2w12Rak2~u12cc1!,

~46!

] tC01
1

2
]z~w1c1!5L]z

2~C01u0!, ~47!

] tc11w1]zC05L~]z
22k2!~c11u1!, ~48!

] tu01
1

2
]z~w1u1!5]z

2u0 , ~49!

] tu12w11w1]zu05~]z
22k2!u1 , ~50!

with the boundary conditions

]z~c11u1!uz561/250, ~51!

]z~C01u0!uz561/251, ~52!

u1uz561/25u0uz561/250, ~53!

w1uz561/25]zw1uz561/250. ~54!

To solve this boundary-value problem we adopt vertical p
files w1 , u0 , u1 , C0, andc1 in the form

w1~z,t !5A~ t !cos2~pz!, ~55!

u1~z,t !5B~ t !cospz, ~56!

u0~z,t !5F~ t !sin 2pz, ~57!

C0~z,t !5z2u0~z,t !1 (
n50

n5N

an~ t !sin~2n11!pz, ~58!

c1~z,t !52u1~z,t !1 (
n50

n5N

bn~ t !cos 2npz, ~59!

which satisfy the boundary conditions~51!–~54! identically.
The above equations describe two-dimensional convectio
the form of parallel rolls along they axis in an infinite slab of
thickness 1. We point out that forc50, the concentration
fields decouple from temperature and velocity. This redu
Eqs. ~55!–~57! to the 3-mode model introduced by Loren
@26# to mimic the dynamics of convective rolls in single
component Rayleigh-Be´nard convection. At nonzeroc, con-
vection is modified by the concentration field but we c
adopt the above few-mode expansions for temperature
velocity without modifications, because the diffusivities f
heat and momentum are large enough to prevent the app
ance of strong gradients. By way of contrast, owing to
small Lewis number, the concentration field does build
steep boundary layers, which we account for by multimo
Fourier series as given in Eqs.~58! and ~59!. For C0 the
modes are antisymmetric inz and resemble the solution~13!,
while for c1 symmetric modes are appropriate. The num
N of contributing modes was taken large enough to ens
that the results are insensitive against a further increase oN.
For the parameter values considered here,N520 turned out
to be sufficient.
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The equations for the mode amplitudesA,B,F,an ,bn
have been solved by a Runge-Kutta integration. The w
numberk, usually taken to be the mode of maximum line
growth ratel(k,Ra) varies between 3 and 3.5 within th
investigated Rayleigh number regime. However, since
final predictions of our model turned out not to depend s
sitively on thek value chosen we adopted in all of our sim
lations k5p. All runs were started from an initial configu
ration characterized by a undisturbed linear tempera
profile T5Tcond, a uniform concentration distribution]zC0
5c150, and small random velocity fluctuations. The tim
evolution of the velocity amplitudeA(t) as obtained from a
typical simulation run is presented in Fig. 3 for two differe
values of the Rayleigh number («5Ra/Rac

021565.7%) on
either side of the pure-fluid reference threshold Rac

0 . The
dashed line in Fig. 3 denotes pure-fluid reference casc
50. In all of our runs the convective motion was found
settle in a state ofstationaryconvection. A relaxation oscil-
lation behavior as predicted in Ref.@16# could not be ob-
served. The times necessary to reach the saturation value
several thermal diffusion times and increase with decreas
«. However, they are still much shorter than the evoluti
time of the creeping concentration profile, thus corroborat
our assumption]zC050 in the preceding section. The ove
shoot in Fig. 3 before the plateau values are reached is n
numerical artifact, but it may be related to the small numb
of lateral modes we have taken into account. This can
expected, since additional modes with negative growth r
smooth out the relaxation into the saturated state.

Figure 4 shows the corresponding bifurcation diagr
with the dependence of the saturation amplitude on the
duced Rayleigh number. At«.0 the amplitude saturates at
value that does not significantly deviate from the sing
component case. On the other hand, the influence of the
centration field is most pronounced for Ra<Rac

0 . This is a
consequence of the competitive interaction between

FIG. 3. The time dependence of the velocity amplitudeA(t) for
positive and negative values of«5Ra/Rac

021 in terms of the ther-
mal diffusion time t td ~for Pr57 and L5731025). The dashed
gray line corresponds to single-component fluid (c50) «50.056.
2-6
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THERMAL CONVECTION IN BINARY FLUID MIXTURE S . . . PHYSICAL REVIEW E 67, 046302 ~2003!
small Lewis number and the large separation ratio. Decre
ing L makes the curve in Fig. 4 approach to the dash
reference line, whereas risingc has the opposite effect as
amplifies the solutal buoyancy forces. For the sake of co
parison the dotted lines in Fig. 4 show an analytical appro
mation for the saturated velocity amplitude based on
7-mode Galerkin approximation recently introduced
Hollinger, Lücke, and Mu¨ller @Eq. ~4.1b! in Ref. @22##.

Unlike a single-component system, where convective p
turbations decay for negative«, the ferrofluid exhibits a pro-
nounced positive linear growth rate~cf. Fig. 2!. When mea-
suring a bifurcation diagram such as Fig. 4, one mi
conclude that the bifurcation is imperfect. Indeed, a sli
imperfect behavior was observed in the experiments of B
zzi, Ciliberto, and Croquette@15# and of Schwab, Hilde-
brandt, and Stierstadt@14#, who recorded the convective he
transport as a function of Ra. But we learn here that t
phenomenon is to be attributed to the concentration dyn
ics: As outlined in Sec. 3, the very onset for convection
located at a much smaller Rayleigh number Rac , but at Ray-
leigh numbers slightly larger the linear growth rate of dist
bances remains extremely small. Thus, trying to detect Rac in
such an experiment would be hopeless, as it requires
tremely long observation times. Experiments on ferroflu
have been reported recently@27# that corroborate the behav
ior shown in Fig. 4.

In contrast, at« around610–20 % the time necessary
wait for the equilibration of the nonlinear convective sta
amounts to only a fewthermaldiffusion times~see Fig. 3!.
This statement, which holds in particular also for the conc
tration field, demonstrates that the growth of convective p
turbations is a fast process on the~creeping! time scale 1/L
of solutal diffusion. On the first view this might appear cou
terintuitive, but it can be seen from Fig. 5 that the fin
concentration distribution differs from the initial homog

FIG. 4. The saturation amplitudeAsat5A(t→`) as a function
«5Ra/Rac

021 ~parameters as in Fig. 3!. The dashed gray line cor
responds to a single-component fluid (c50). Dotted lines show the
result of a 7-mode Galerkin approximation as given by Eq.~4.1b! in
Ref. @22#.
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neous profile only inthin boundary layers. Consequentl
time consuming redistribution processes of the concentra
field are not necessary for building up the solutal saturat
profiles. This keeps the equilibration time small and no f
ther evolution on the slow diffusion time scale occurs af
the system reaches the state given in Fig. 5.

V. CONCLUSION

Thermoconvection of binary mixtures with a weak co
centration diffusivity and a large separation number has b
investigated theoretically. By considering the classical R
leigh Bénard setup, it is shown that both the linear as well
the nonlinear convective behavior is significantly altered
the concentration field as compared to single-component
tems. Starting from an initial motionless configuration with
uniform concentration distribution, convective perturbatio
are found to grow even at Rayleigh numbers well below
threshold Rac

0 of pure-fluid convection. It turned out that th
actual critical Rayleigh number Rac is drastically smaller, but
experimentally inaccessible due to the extremely sl
growth of convection patterns for Ra*Rac , requiring ex-
tremely large observation times. On the other hand, opera
the ferrofluid convection experiment at Rayleigh numb
Rac,Ra&Rac

0 , reveals considerable positive growth rate
which lead to a saturated nonlinear state almost as fas
pure-fluid convection does at Ra.Rac

0 . This result is cor-
roborated by earlier convection experiments. It does
comply with a recent prediction of convective se
oscillations conjectured from the interplay between sh
thermal and slow solutal diffusion time scales.
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FIG. 5. ~a! The conductive concentration profileC0(z)
5C0(z,t→`) in the fully developed saturated state for«
520.058~parameters Pr57, L5731025, andc510). ~b! Same
as ~a! for the convective concentration fieldc1(z)5c1(z,t→`).
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